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Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling
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We propose a control method with time delayed coupling which makes it possible to convert the stability
features of systems close to a Hopf bifurcation. We consider two delay-coupled normal forms for Hopf
bifurcation and demonstrate the conversion of stability, i.e., an interchange between the sub- and supercritical
Hopf bifurcation. The control system provides us with an unified method for stabilizing both the unstable
periodic orbit and the unstable steady state and reveals typical effects like amplitude death and phase locking.
The main method and the results are applicable to a wide class of systems showing Hopf bifurcations, for
example, the Van der Pol oscillator. The analytical theory is supported by numerical simulations of two
delay-coupled Van der Pol oscillators, which show good agreement with the theory.
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I. INTRODUCTION

Time delayed feedback control (DFC) [1] is a simple and
convenient method to stabilize unstable periodic orbits
(UPOs) occurring in time-continuous nonlinear dynamical
systems. Since DFC uses only the difference of the current
and the delayed state where the time delay is given by the
period of the UPO, the control is non-invasive and is appli-
cable to systems whose equations of motion are unknown.
Due to this convenience, the algorithm of DFC has been
applied to quite diverse experimental systems in physics,
chemistry, biology, and medicine [2-9] and theoretical ad-
vances have also been made, e.g., [10-17]. However, it has
been contended [18,19] that the method fails in the case of
torsion-free UPOs or, more precisely, for UPOs with an odd
number of real positive Floquet exponents. In order to over-
come the odd number limitation, an unstable delayed feed-
back controller [20,21] and a half-period delayed feedback
control [22] were suggested. More recently, it has been
shown that the odd number limitation does not hold if the
control force is coupled to the system by a rotational matrix
with suitable phase [23]. The problem of stabilizing an UPO
with an unstable controller in a dynamical system close to a
subcritical Hopf bifurcation can be treated analytically by
means of standard asymptotic methods developed in the
theory of weakly nonlinear oscillators [24], but the control
terms should be nonlinear, which results in a limitation of the
basin of attraction to a narrow range around the UPO.

In parallel to the control of UPOs, the stabilization of
unstable steady states (USSs) has become a field of increas-
ing interest. One of the methods to control an USS intro-
duced by Pyragas et al. uses the difference between the cur-
rent state and a low-pass filtered version [25,26]. A DFC
scheme in a diagonal coupling form, which was originally
invented to control UPOs, has been analytically investigated
by using the Lambert function for the purpose of stabilizing
the USS [27,28]. Diffusively coupled limit cycle oscillators
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without time delay exhibit complex phenomena such as syn-
chronization and amplitude death [29-32]. For weakly
coupled oscillators the predominant effect is a synchroniza-
tion of the frequencies of the individual oscillators to a single
common frequency once the coupling strength exceeds a cer-
tain threshold, while the amplitudes remain unaffected. For
stronger couplings the amplitudes also play an important role
and give rise to coupling induced stabilization of an USS,
that is, amplitude death of the oscillations. On the other
hand, the delay induced death discovered by Ramana Reddy
et al. [33,34], has attracted considerable interest [35] and it
has been thoroughly investigated using experimental and the-
oretical approaches [36-39]. Two limit cycle oscillators that
interact with each other via diffusive delayed coupling show
amplitude death of the oscillators even if they have the same
frequency, which is in sharp contrast to the situation with no
time delay where amplitude death can occur only if the fre-
quencies are sufficiently different. However, in both cases
the coupling between the oscillators should be sufficiently
strong for amplitude death.

The purpose of this paper is to propose a unified time-
delay control method which makes it possible to stabilize
either an UPO or an USS that appears in a dynamical system
close to a subcritical or a supercritical Hopf bifurcation, re-
spectively. We consider a delay-coupled system of the nor-
mal form for a Hopf bifurcation which is also known as a
Stuart-Landau oscillator. In our system, the control terms do
not only include the difference between the current and the
delayed value but also a state variable of the controller alone,
in a form that is neither diagonal nor diffusive. Therefore, the
stabilization of UPOs becomes possible even under an odd
number condition and also with half-period control. Since we
consider a situation close to the Hopf bifurcation, all relevant
features, including the criteria for phase synchronization as
well as an estimate of the Floquet exponents, can be treated
analytically. As a result of this we can show that the stability
features close to the Hopf bifurcation are converted, resulting
in the stabilization of the UPO and amplitude death. The
basin of attraction for stabilizing UPO and USS has a global
characteristic due to the linear coupling and the amplitude
death occurs with a small coupling strength. The same results
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can be obtained also for other systems exhibiting Hopf bifur-
cations, for example, two delay-coupled Van der Pol type
systems. This example is confirmed numerically.

The paper is organized as follows. In Sec. II we present
our model and derive equations for amplitude and phase dif-
ference. Section III is devoted to the analysis of the phase
difference and the phase-locking condition for two delay-
coupled normal forms. In Sec. IV, we analyze the amplitude
equations and demonstrate the conversion effect of stability
for full-period and half-period coupling. In Sec. V, we con-
sider two delay-coupled Van der Pol systems as another
model for the Hopf bifurcation and show the conversion of
stability by means of approximate analysis as well as direct
numerical simulations. Finally, in Sec. VI, we draw some
conclusions.

II. A MODEL OF TWO DELAY-COUPLED LIMIT CYCLE
SYSTEMS

We consider the following model of a system with a limit
cycle (Z,) coupled to a control system (Z,):

Zo(1) = (2Ng + iwg T |Zo(1)|)Zo(1) + KZ,(1), (1)

Z(t) = (N + i~ |Z()P)Z(1) - K[Zy(1) - Zo(t - 7],
(2)

where Z,(1) and Z_() are the complex amplitudes of the limit
cycle system and of the controller, respectively. In the ab-
sence of coupling (K_:O), Eq. (1) has a stable or unstable
limit cycle at |Zy| =\, for \y>0 with natural frequency w,
according to the choice of sign on the right hand side. That
is, the system to be controlled is the normal form of the
super- or subcritical Hopf bifurcation model with bifurcation
parameter \. Equation (2), which denotes the controller, has
an unstable fixed point at the origin and a stable limit cycle
at |Z.| =\, with natural frequency w, for \,>0. K(>0) is
the coupling strength and the delay time 7 is chosen as the
period of the limit cycle of the system (7=27/w,). If a tra-
jectory of the system described by Eq. (1) coincides with an
USS or an UPO with period 7and the controller described by
Eq. (2) remains on the USS at the origin, the coupling terms
vanish in Egs. (1) and (2).Therefore, our delay-coupling
method allows for noninvasive control of dynamical sys-
tems. Introducing the phases ¢, ¢ and the real amplitudes r,
w by Zo()=r()e'®” and Z.(1)=w(t)e'”™, and substituting
into Egs. (1) and (2) we obtain the following equations:

7= f.(r) + Kw cos(¢ — 1), 3)

K
o=y === sin(p- 1), )

w=(\,—wH)w—K[rcos(e¢— )
—-r; COS(QDT_ (/l)]’ (5)
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. K
¢= W, — ;[r Sin(‘P - ¢) I Sin(‘)D'r_ lﬂ)]9

(6)

where r,=r(t—7), ¢,= @(t—17) and f.(r)=+(\y—r?)r, repre-
senting the super- and subcritical Hopf normal form accord-
ing to the choice of sign “+” and “-”, respectively. Note that
fo(r)==f(r).

In the following we consider the limit cycle system close
to the Hopf bifurcation, i.e., [\o| < @, and in the controller
we fix the parameter \, at a small positive value (0
<\.< w,). Then we can assume that the amplitudes r(¢) and
w(r) vary very slowly in comparison with the phases ¢(r) and

(1):

|}" -r 7'|
— <. (7)
r

Moreover, if the difference of frequencies between the sys-
tem and the controller is assumed to be small (wy= w,), the
phase difference 6=¢— is also a slowly varying quantity.
Now the derivative of the phase ¢ of Eq. (4) can be regarded
approximately as constant. Thus the phase ¢ becomes a lin-
ear function of time ¢, and the delayed phase ¢, can be writ-
ten as

. Kw .
¢~ ¢- 9= 7| Wy~ —=sin(p—4) |,

which yields

Kmw |
o, —p= 0+ sin 0— w,T.
r

Therefore, Egs. (3)-(6) can be reduced to three equations for
the amplitudes and the phase difference as follows:

r=f.(r)+ Kw cos 6, (8)

Krw sin 0)} , 9
sin 0] |,

(10)

W:)\L.W—K[r cos 0—rTcos<0+

. roow ry .
0=Aw+K{(— - —)sin 60— — sm(0+

w r w

where Aw=wy—w, is the frequency detuning between the
system and the controller. Here the cubic term of w was
neglected in Eq. (9) since we confine ourselves to the behav-
ior of the controller close to the unstable fixed point at zero.

III. ANALYSIS OF THE PHASE DIFFERENCE EQUATION:
PHASE-LOCKING

By inspecting Eq. (10), we see that if Aw=0 then there
are two stationary values 6,=0, #,= for the phase differ-
ence. For these values Egs. (8) and (9) have two stationary
invariant solutions (w”*,7")=(0,0) and (w",r")=(0,V\).
However, even in the case of Aw=0 it is difficult to evaluate
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directly the stability of the invariant sets of the coupled sys-
tem. So we have to perform some approximation as follows.
In the vicinity of the fixed point satisfying sin #" =0, Eq. (9)
can be written as w=\.w—K(r—r,)cos 6, and we can evalu-
ate approximately the order of w(r) as

w(t) = K|(r = r,)cos 6°|/\,

since the variable w(z) is slow. Taking into account Eq. (7),
we obtain the following estimate:
w 5 |r —r T|

- < 1. (11)

ro N T

Then we can expand the second term inside the square
bracket of Eq. (10) into a power series with respect to
K7(w/r)sin 6 up to the first order as

sin(0+ KTE sin 0) =~ sin 19+K*rE cos 6sin 0,
r r

and Eq. (10) can be written as

r—r, Krr,

9=Aw+K< cos G—K)sin 0. (12)
r

w r

For 7|7|/r<1, the delay term r, can be approximated by the
first derivative as r,=r(t—7) = r(t)— 17, i.e.,

r—r,=Tr. (13)

By using Eq. (8) we get the expression r—r.=f.(r)
+Kw cos 6], and thus Eq. (12) yields

. —r
0=Aw

£ r-rs .
+K 7-f‘—(r)+K7' cos H—E sin 6. (14)
w r

r

This system can be simplified even further. Taking into ac-
count Eq. (7) and Eq. (11), we can neglect the second and
third term in the square bracket of Eq. (14) and obtain finally
the approximate equation for the phase difference as

6=Aw

+Msin 0. (15)
w

Figure 1 illustrates how the stationary points #° for the
phase difference are positioned as intersections of the
straight line of —Aw and two sine curves. If

Aw
fa(r)
there are two stationary values in the interval [—7/2,37/2]:
-wAw
=

Kr>w

>

o P—
0., =sin '(

- wAw)
Kifu(r))

It is obvious that inside the limit cycle the function f,(r)
corresponding to the supercritical Hopf bifurcation is posi-
tive, while f_(r) for the subcritical one is negative. Taking
this into account, we can see from Eq. (15) that, for the USS

0,,=1m— sin‘1<
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FIG. 1. Stability of the stationary points of phase difference for
the USS (supercritical) and UPO (subcritical) system. From Eq.
(15), the stationary points are given by intersection of the straight
line of —Aw and the solid (USS system) or dotted (UPO system)
sine curve. The black dots and open circles on the intersection de-
note the stable and unstable stationary points, respectively. The in-
set shows the positive and negative features of the function f,(r)
and f_(r) inside the limit cycle, respectively, which results in the
converted relation between the solid and dotted sine curves in the
main figure.

system (supercritical), the fixed point 6, is unstable and 6.,
is stable. On the other hand, for the UPO system (subcriti-
cal), the fixed point 6, is stable and ¢, is unstable. For
example, if Aw=0, the UPO system and the controller are
synchronized without phase difference, while the USS sys-
tem and the controller are oscillating in antiphase (antisyn-
chronization).

The system and the controller run at a constant frequency
given by

wAw
mrfu(r)’

This common frequency is generally not the arithmetic
mean; instead the frequencies of the system and controller
are shifted from the synchronized frequency by an amount
determined from

w*z(,b: llf:w0+

*
Wy~ w Y

:‘1+7

<1,

*
W, — W

where y=w?/7rf.(r), and away from the limit cycle r=1\,,
|y| ~ (w/r)? is small by Eq. (11). This means that the syn-
chronized frequency is much closer to the frequency of the
system than of the controller. If

Aw
ft(r)

there is no stationary phase difference, i.e., no phase locking.

Kr<w

>

IV. ANALYSIS OF AMPLITUDE EQUATIONS:
CONVERSION OF STABILITY

Now, let us consider the amplitude behavior on the basis
of the phase locking characteristics demonstrated above. If
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Aw=0 and the system is apart from the limit cycle, the
following estimate can be seen from Egs. (8) and (15):

dr 1 w (o<1
— = —+7yco .
rdd Krsin6r Y

Thus the variation of the phase difference before arriving at
the phase locking is very fast in comparison with the ampli-
tudes. This means that phase locking precedes the evolution
of amplitudes and we are allowed to consider the amplitude
equations (8) and (9) after replacing the relative phase 6 by
the stationary values 6°. If Aw=0, for example, the ampli-
tude equations for the USS (6°=m) and the UPO (6°=0)
system can be reduced to

F=f.(r) - Kw,

w=Aw+K(r-r,),
and

F=f_(r) + Kw,

w=Aw-K(r-r,),

respectively. If Aw# 0 but sin §°~ 0, more generally, Eq. (9)
can be written as w=A.w—K(r—r,)cos 8", which yields the
final amplitude equations as follows:

F=f.(r)+w, (16)

W=Aab—k(r—r), (17)

where w=Kw cos 6" and k=K? cos*#". It is obvious that Egs.
(16) and (17) have fixed points at (r*,w")=(r,,0), where r,
=0 or ry= \J’)TO. By using approximation (13), the time-delay
system (16) and (17) can be transformed to a system of or-
dinary differential equations:

F=f.r)+w, (18)

W= — k7, (19)

which is, in essential, equivalent to the low pass filtering
control system considered in [25]. Since Eq. (19) describes a
high pass filter with a slow input signal r(¢) it follows natu-
rally that the output signal w(r) is very small in comparison
with r(z), which was derived earlier in Eq. (11). We can
rewrite Eqs. (18) and (19) as

P+ [kT—fo(r) = NJr+ Nofu(r) =0,

which yields, by using the slow time-scale of the variable
r(t), the approximation: [k7—f.(r) =\ .]F==\.f.(r). Then we
can see

P~ =fur)=f=(r), (20)
if the following conditions are fulfilled:
Ne>0, k> fi(ro) + .. (21)

Note that the system without the delay control is described
by r=f.(r), and compare it with Eq. (20) that denotes the
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FIG. 2. Real parts of the complex eigenvalues A as a function of
the control gain k. (a) Numerical solution of the transcendental
characteristic equation (22). (b) Enlarged part (the solid line) of (a).
The dashed line denotes the approximate eigenvalues obtained ana-
lytically from Eq. (23). Parameters: \;=\.=0.05; wy=1; .~ 1; 7
=21/ wy.

effective system with the control. We see that the stability of
the controlled system has been converted, i.e., the stable
fixed point becomes unstable and the unstable fixed point
becomes stable in the amplitude equations. In the limit cycle
system, Eq. (20) implies that the UPO and the USS have
been transformed to a stable limit cycle and a stable fixed
point, respectively, and vice versa. This means that stabiliza-
tion of the UPO and USS might be efficiently achieved, that
is, the stability of the Hopf bifurcation system might be strik-
ingly converted by the time-delay coupling with a self-
sustained oscillator. However, this conjecture should be con-
firmed through the analysis of the time-delayed system (16)
and (17) rather than the ordinary differential equations (18)
and (19).

The eigenvalues A of the fixed point (r*,w")=(ry,0) of
the time-delay system (16), (17) and the approximate ordi-
nary differential equations (18), (19) satisfy the characteristic
equation

A2 = N+ ANJA AN +E(1—e ) =0 (22)
and
A2+ (kT=N,=NJA + A\ =0, (23)

respectively, where A=\, for r,=0 and A;=2\, for r,
=\\o and the linearization f,(r)=\,(r—r,) around the un-
stable fixed point r, was applied without loss of generality.
Note that Eq. (23) follows from Eq. (22) under the approxi-
mation [Re A|7< 1. It is difficult to see analytically the be-
havior of the solutions of Eq. (22). Whereas, the root loci of
Eq. (23) can be seen as considered in [25]: For k=0, the
eigenvalues are A\, and A, which correspond to the free sys-
tem and free controller, respectively. With the increase of k,
they approach each other on the real axis, then collide at k
=(\;+A.—2V\\_)/7 and form a complex conjugate pair in
the complex plane. At k=(A\;+\.)/7, they cross symmetri-
cally into the left half plane (inverse Hopf bifurcation). The
condition for stabilization, k> (\,+\,.)/ 7, coincides with Eq.
(21). (Note that there exists no upper boundary of control
gain k for stabilizing the UPO and USS, the existence of
which is often found in time-delay control.) Figure 2 shows
the real parts of the complex eigenvalues A as a function of
control gain k, which was numerically obtained from the
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4—
X

(a) (b)
FIG. 3. Conversion of stability in normal forms (complex Z)
for the (a) supercritical and (b) subcritical Hopf bifurcation by cou-
pling to a supercritical normal form (Z,). Stable and unstable states

are indicated by full lines—circles and broken lines—empty circles,
respectively.

exact transcendental equation (22). We see that there exists
an interval of control gain k for which the real parts of A are
negative, so that unstable fixed point r, becomes stable. The
dashed line in the enlarged part corresponds to the approxi-
mate eigenvalues obtained analytically from Eq. (23) and the
parameters are chosen in both case as A;=\.=0.05, wy=1,
w.~1,7=27/ w,.

On the other hand, it is obvious that the previously stable
fixed point becomes always unstable and is transformed to a
saddle point due to the unstable controller: \;<<0 and A,
> (). Thus the stability of the limit cycle and the fixed point is
exchanged by time delay coupling of the self-sustained os-
cillator (Fig. 3).

So far, we have considered a time delay coupling scheme
in which the time delay was chosen to be the period of the
limit cycle, i.e., 7=27/w,. Next, a half-period control sys-
tem with a delay time 7/2 will be considered as follows:

Zo(t) = (£\g + iwy T |Zo(0)P)Zo(t) + KZ(1),

Z(0) = (N + iw. ~ |Z(0)Z(t) = K[Zy(1) + Zo(t = 7/2)],

Note that rather than the difference between the current and
delayed state the sum is used as the control signal in the
above control system, which corresponds to an additional
phase 7. We obtain the same equations for the amplitudes
and phase difference as Egs. (8)-(10), i.e.,

F=f.(r)+ Kw cos 6,

. Kmw .
w:)\cw—K{rcos 0—r7,2cos<0+—2 sin 0)],
r

6= Aw+K[<L - K)sin g2 sin<0+ Knw sin 6)]

wor w 2r
This means that the half-period control shows also the con-
version of the stability in the Hopf bifurcation system. More-
over, the range of the bifurcation parameter A available for
the conversion can be enlarged since the assumption |r
—r.p|/r<1 is more easily satisfied than |r—r,|/r<1 by
decreasing the time delay.

V. TWO DELAY-COUPLED VAN DER POL OSCILLATORS

Above we have considered the normal form of the Hopf
bifurcation. The same results on the stability of amplitudes
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and phases can also be obtained for other systems exhibiting
Hopf bifurcations, for example, a delay-coupled Van der Pol
oscillator:

¥+ (69— x2)% + wix = Ki, (24)

ii — (&, — u)ii + wlu=—K(x - x,), (25)

where Eq. (24) shows a sub- and supercritical Hopf bifurca-
tion for the upper and the lower sign, respectively, and ¢ is
the bifurcation parameter. The parameter €. in control system
(25) is fixed at a small positive value. Close to the bifurca-
tion point, €,=0, we can apply the averaging method [40] to
obtain an approximate solution, which yields the amplitude
and phase equations as

- (60 r2>+Kwa (o— )
r=xr{——-— cos(@— ),
27 8) " 2w, N

Kow

sin(@ - ¢),

D= —
= 2wgr

2
Wm%i—ﬁj—fﬂham¢—w—mwa%—wm
2w,

. K
=0, = 5 L sin(e - ) = r.sin(e, - )],

W

where the transformations x=rcos ¢, X=—wyrsin @, u
=w cos ¢ and u=-w,w sin ¢y were used. By using an ap-
proximation similar to Sec. II, the above equations can be
reduced as follows:

. Kow
F=f.(r)+ cos 6,
2(1)0
. € Kw, Ko, w |
w=—_—w——_——|rcos —r_cos| 0+ sin 0| |,
2 2w, 2wyr

. K| [ wgr ww) . woyr
0=Aw+—||——-—|sin - ——
21 \ow  wyr W

Ko.w . )}
sin ] |,
2wyr

where f,(r)=+r(4€—-1")/8, O=¢— and Aw=w)-o,.
These equations are equivalent to Egs. (8)—(10), which
means that all results obtained from the normal form are
available also for the Van der Pol oscillators system.

To support the above analytical theory we have performed
numerical simulations of the system (24) and (25). The re-
sults for the upper sign corresponding to an UPO system and
the set of parameters (¢, €., wy,w.)=(0.1,0.1,1,1) are
shown in Fig. 4. Without control, K=0 (¢<20), the system
(24) converges to the fixed point at zero and the controller is
kept at the fixed point by zero initial condition. With control
gain K=0.4 activated at r=20, the controlled system ap-
proaches the previously unstable orbit after a transient pro-
cess [Fig. 4(a)], and the controller and feedback perturbation

><sin<0+
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FIG. 4. Results of numerical integration of the delay-differential
equations (24) and (25) with the upper sign for (&, €., g, ®., 7)
=(0.1,0.1,1,1,277). The control perturbation with K=0.4 is
switched on at t=20. The delayed coupling stabilizes an UPO. (a)
Dynamics of the x variable, (b) u variable, and (c) perturbation x
—x,. (d) Enlarged part of (a) and (b) between =490 and =510
where the phase-locking can be seen.

vanish [Figs. 4(a) and 4(b)]. It should be noted that the basin
of attraction for stabilizing the UPO includes the whole area
inside the UPO in the (x,x) phase plane. This is in contrast to
the result of an unstable controller method [24] in which the
basin is limited to an area around the UPO. The enlarged part
between =490 and r=510 shows the phase locking with the
phase difference #=0 [Fig. 4(d)], which confirms our ana-
lytical results.

Figure 5 shows the control of the USS system for the
lower sign in Eq. (24). We can see that the two self-sustained
oscillations disappear as well as the feedback perturbation
after the time delay coupling is activated at =100 with K
=0.4 [Figs. 5(a)-5(c)]. This is a kind of amplitude death
exhibited in the coupled self-sustained oscillators system.
Note that the amplitude death occurs with a small coupling
strength in contrast to the previous studies [33,34]. The
phase difference between two Van der Pol oscillators is
maintained with 6= as shown in Fig. 5(d), which coincides
with the theoretically obtained value.

VI. CONCLUSIONS

In this paper, we have proposed a control method with
time delayed coupling for converting the stability features of
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FIG. 5. Same diagrams as in Fig. 4 but for the lower sign in Egs.
(24) and (25). Two delay-coupled Van der Pol oscillators exhibit
amplitude death after switching on control at t=100 with the same
parameters as in Fig. 4 through antiphase locking.

systems close to a Hopf bifurcation. We have considered two
delay-coupled normal forms for Hopf bifurcations and dem-
onstrated the phase-locking as well as the conversion of sta-
bility of the limit cycle and fixed point, i.e., an interchange of
sub- and supercritical Hopf bifurcation. The control system
provides us with a unified method for stabilizing both the
UPO and USS and it has a larger basin of attraction in com-
parison with the nonlinear control scheme in [24]. Since the
delayed-coupling terms differ from the conventional DFC,
the control system is not subject to the odd number limitaion
and can be extended to a half-period control as well as a
full-period control. We have demonstrated that two self-
sustained oscillators with this delayed coupling manifest am-
plitude death through antiphase synchronization, which holds
for rather small coupling strength unlike amplitude death
phenomena with a diffusive coupling. The main method and
results are applicable to a wide class of systems showing
Hopf bifurcations, for example, the Van der Pol oscillator.
The analytical theory was supported by numerical simula-
tions of two delay-coupled Van der Pol type systems, which
shows good agreement with the theory.
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